加拿大pc

論壇講座

On the Willmore-minimizing problem for surfaces with symmetry

【系綜(zong)合學(xue)術報(bao)告】

時間:2021年(nian) 9月7日15:00-16:00

地點:理科(ke)樓A304

標題(ti):On the Willmore-minimizing problem for surfaces with symmetry

摘(zhai)要:It was conjectured by Prof. Rob Kusner in 1989 that the Lawson minimal surfaces \xi_{g,1} minimizes uniquely the Willmore energy among all genus-g, oriented, closed surfaces in S^n. When g=1, this reduces to the famous Willmore conjecture. In this talk we will introduce some process on this conjecture. We will first show that this conjecture holds if the surface in S^n has the same (induced) conformal structure as \xi_{g,1}. We will also show that this conjecture holds if the surface is contained in S^3 and is symmetric under the discrete group G_{g,1}. Here G_{g,1} is the group generated by some reflections which are used in Lawons's construction of \xi_{g,1}. Finally we will show that \xi_{g,1} is Willmore stable.

報告人:王鵬(福建師范大學,教授)

報告人簡介:2002年(nian)(nian)本(ben)科(ke)畢業于蘭州大(da)(da)學(xue)大(da)(da)學(xue)物理學(xue)專業,2008年(nian)(nian)獲(huo)北京大(da)(da)學(xue)基礎(chu) 加拿(na)(na)(na)大(da)(da)pc官(guan)(guan)網博(bo)士學(xue)位,2008年(nian)(nian)進入同(tong)濟大(da)(da)學(xue) 加拿(na)(na)(na)大(da)(da)pc官(guan)(guan)網系工(gong)作,歷(li)任(ren)講師,副教授,教授。2010-2011年(nian)(nian)間在(zai)德國慕(mu)尼(ni)黑工(gong)業大(da)(da)學(xue) 加拿(na)(na)(na)大(da)(da)pc官(guan)(guan)網系從(cong)事博(bo)士后研究,2016-2017年(nian)(nian)間在(zai)麻省大(da)(da)學(xue)阿莫斯特分校(xiao) 加拿(na)(na)(na)大(da)(da)pc官(guan)(guan)網系訪學(xue)。研究方向為微(wei)分幾(ji)何。2018年(nian)(nian)8月進入福建(jian)師范大(da)(da)學(xue) 加拿(na)(na)(na)大(da)(da)pc官(guan)(guan)網與(yu)(yu)信息學(xue)院任(ren)教,主持(chi)國家自然科(ke)學(xue)基金(jin)面上項(xiang)目1項(xiang)、完成國家自然科(ke)學(xue)基金(jin)青年(nian)(nian)基金(jin)及 加拿(na)(na)(na)大(da)(da)pc官(guan)(guan)網天元各1項(xiang),在(zai)太平洋幾(ji)何會(hui)議(yi)(yi)、微(wei)分幾(ji)何與(yu)(yu)可積系統會(hui)議(yi)(yi)、中日(ri)幾(ji)何會(hui)議(yi)(yi)、子流(liu)形的幾(ji)何與(yu)(yu)拓撲等國際學(xue)術會(hui)議(yi)(yi)作邀請報告,在(zai)J. Diff. Geom、
Adv math、Proc AMS、BLMS、Tohoku math J、Pacific math J等(deng)學術期刊(kan)上(shang)發表(biao)研究論(lun)文(wen)17篇,受(shou)邀論(lun)文(wen)2篇。